

Water Jacket CFD Modeling

Dan Agnew, President and Principal Engineer January 15, 2022

www.DDA-Engr.com

Outline

- 1. Purpose.
- 2. Waterjacket Core Model and Set Up.
- 3. Gasket Options Studied.
- 4. Results Summary.
 - a. Gasket Flow.
 - b. Convective Head Transfer Coefficient Contours.
 - c. Wall Pressure Contours.
 - d. Velocity Sections.
- 5. Summary.

Purpose

- 1. Evaluate the Balance of Water Flow Throughout the Waterjacket of a Generic Four-Cylinder Engine.
 - a) Mass Flow Through the Head Gasket Passages.
 - b) Pressure Distribution.
 - c) Convective Heat Transfer Coefficient on Wall.

CAD Model and Water Jacket Core Models

Block and Head Assembly

Water Pump Inlet, Impeller was not included as part of this model, flow rate was set to 2.29 kg/s or 36 gpm

> Thermostat water outlet, area was set to obtain desired restriction of 186 kPa (abs) or 12.9 psig.

Water Jacket Core

Gasket Area Options Studied

Gasket Area Options Flow Rate Results, Ave = 0.381 kg/s

Gasket Area Options Flow Rate Results, % From Average

ODDA ENGINEERING

Convective Heat Transfer Coefficient

Convective Heat Transfer Coefficient

Pressure Contours

Pressure Contours

Velocity – Section Through Lower Block

Velocity – Section Through Head

Summary

- 1. As shown by the models here, engine water jacket systems (or any thermal system) can be modeled effectively this way in a simple and efficient manner with little investment, and much can be learned quickly.
- 2. In this case, with only making area changes to the head gasket, good improvements can be made in flow uniformity.
- 3. If more detailed information is required, these models can then be further advanced to a more complete thermal structural analysis.

